Elmsford, NY SEEQC, the Digital Quantum Computing company, today announced the Air Force Research Laboratory (AFRL) in Rome, NY, has formally granted the firm a Small Business Technology Transfer (STTR) Phase II award with a start date of May 1, 2021. The $1.5 million award enables SEEQC and its partner, NY CREATES, to build on the success of their Phase I collaboration and continue to jointly develop fluxonium qubit technology.

”NY CREATES and SEEQC are looking forward to enable tantalum-based fluxonium qubit fabrication at 300mm wafer scale,” said Oleg Mukhanov, Ph.D., co-founder and CTO of SEEQC. “The AFRL award and ensuing project will serve as a proof-of-concept for our eventual goal of producing fluxonium qubits cost-efficiently and at scale. By nature, these qubits can benefit all quantum applications with improved controllability and fidelity.”

“This leading-edge partnership with SEEQC and AFRL is one of the many ways in which NY CREATES is working to accelerate the burgeoning quantum ecosystem in New York,” said Douglas Grose, Ph.D., President of NY CREATES. “NY CREATES is uniquely capable of supporting the open, collaborative R&D and economic development model that will establish New York as the preeminent site for companies working on Quantum 2.0 for years to come.”

Creating a path to scalable quantum computing

The Air Force awarded SEEQC’s proposal, “Highly Manufacturable Fluxonium Qubits at 300 mm Wafer Scale,” which outlines the necessary and repeatable industrial processes needed to manufacture fluxonium qubits. Fluxonium qubits are superconducting qubits that utilize Josephson junctions, have longer quantum coherence and are advantageous for building high fidelity circuits with large numbers of qubits.

During the first phase of the project, which concluded successfully in November 2020, SEEQC and NY CREATES established the feasibility of designing, fabricating and characterizing superconducting quantum devices at 300 mm scale. In Phase II, the teams will use multiple cycles of learning on both the circuit design and fabrication fronts, and leverage the millikelvin characterization capabilities at SEEQC’s headquarters to produce and characterize the fluxonium qubits using highly-manufacturable processes at 300 mm wafer scale. The team-work that characterized the partnership in Phase I will continue during the 18-month Phase II to demonstrate the world’s first fluxonium qubits that leverage novel materials and process technologies at 300 mm scale. The fluxonium qubits will be integrated with superconducting classical chips designed and fabricated by SEEQC into multi-chip modules providing scalable qubit control and readout infrastructure. This should open a path for a near-term development of quantum processors with superior performance.

The NY CREATES’ team, led by Satyavolu ‘Pops’ Papa Rao is working on multiple areas relating to quantum technologies. In partnership with the University of Maryland, they were the first to demonstrate transmon qubits that utilized 193 nm optical lithography for patterning. In addition to working with AFRL on multiple funded projects, the team is a member of the Brookhaven-led Co-Design Center for Quantum Advantage, which was established in 2020 under the National Quantum Initiative Act. NY CREATES is also actively engaged with commercial entities working to accelerate photonic quantum computing. Researchers interested in joining the NY CREATES research team working on quantum technologies can apply through the NY CREATES website.

Advancing Digital Quantum Computing and National Security Initiatives

The Air Force’s $35 million quantum collider program is designed to accelerate quantum enabling technologies that will eventually play a pivotal role in national defense. This vital research will support SEEQC’s goal of developing a new approach to making quantum computing useful, via fully Digital Quantum Computing.

SEEQC’s solution combines classical and quantum computing to form an all-digital architecture through a system-on-a-chip design that utilizes 10-40 GHz superconductive classical Single Flux Quantum (SFQ) co-processing to address the efficiency, stability and cost issues endemic to quantum computing systems.


SEEQC is developing the first digital quantum computing platform for global businesses. SEEQC combines classical and quantum technologies to address the efficiency, stability and cost issues endemic to quantum computing systems. The company applies classical and quantum technology through digital readout and control technology and through a unique chip-scale architecture. SEEQC’s quantum system provides the energy- and cost-efficiency, speed and digital control required to make quantum computing useful and bring the first commercially-scalable, problem-specific quantum computing applications to market.

The company is one of the first companies to have built a superconductor multi-layer commercial chip foundry and through this experience has the infrastructure in place for design, testing and manufacturing of quantum-ready superconductors. SEEQC is a spin-out of Hypres, the world’s leading developer of superconductor electronics. SEEQC’s team of executives and scientists have deep expertise and experience in commercial superconductive computing solutions and quantum computing. SEEQC is based in Elmsford, NY.


NY CREATES serves as New York’s bridge to the global advanced technology industry. As the primary resource for fostering public-private and academic partnerships in the state, NY CREATES attracts and leads industry connected innovation and commercialization projects that secure significant investment, advance R&D in emerging technologies, and generate the jobs of tomorrow. NY CREATES runs some of the most advanced facilities in the world, boasts more than 2,700 industry experts and faculty, and manages public and private investments of more than $20 billion – placing it at the global epicenter of high-tech innovation and commercialization.

For additional information, please visit https://ny-creates.org/.